PROPOSED INTERNATIONAL STANDARD ON AUDITING 530 (REDAPIRED)

(MARKED FROM EXPOUSE DRAFT)

AUDIT SAMPLING

(Effective for audits of financial statements for periods beginning on or after December 15, 2009)

CONTENTS

<table>
<thead>
<tr>
<th>Introduction</th>
<th>Paragraph</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope of this ISA</td>
<td>1-2</td>
</tr>
<tr>
<td>Effective Date</td>
<td>3</td>
</tr>
<tr>
<td>Objective</td>
<td>4</td>
</tr>
<tr>
<td>Definitions</td>
<td>5</td>
</tr>
</tbody>
</table>

Requirements

Sample Design, Size and Selection of Items for Testing	6-8
Performing Audit Procedures	9-11
Nature and Cause of Deviations and Misstatements	12-13
Projecting and Misstatements	14
Evaluating Sample Results	14-15-16

Application and Other Explanatory Material

Definitions	A1-A3
Sample Design, Size and Selection of Items for Testing	A24-A24
Performing Audit Procedures	A13-A14-A16
Nature and Cause of Deviations and Misstatements	A1517-A1618
Projecting and Misstatements	A19-A21
Evaluating Sample Results	A1722-A24

Appendix 1: Stratification and Value-Weighted Selection

Appendix 2: Examples of Factors Influencing Sample Size for Tests of Controls

Appendix 3: Examples of Factors Influencing Sample Size for Tests of Details

Appendix 4: Sample Selection Methods

*See footnote 1.

Prepared by: Sharon Walker (May 2008)
Appendix 5: Using Estimated Maximum Misstatement to Evaluate Sample Results

International Standard on Auditing (ISA) 530 (Redrafted), “Audit Sampling” should be read in the context of the “Preface to the International Standards on Quality Control, Auditing, Review, Other Assurance and Related Services,” which sets out the authority of ISAs. In conjunction with ISA 200 (Revised and Redrafted), “Overall Objectives of the Independent Auditor and the Conduct of an Audit in Accordance with International Standards on Auditing.”
Introduction

Scope of this ISA

1. This International Standard on Auditing (ISA) deals with the auditor’s use of audit statistical and non-statistical sampling when designing and selecting the audit sample, performing tests of controls and tests of details, and evaluating the results from the sample.

2. This ISA complements [proposed] ISA 500 (Redrafted), “Considering the Relevance and Reliability of Audit Evidence,” which deals with what constitutes audit evidence in an audit of financial statements, the auditor’s responsibility to design and perform audit procedures to obtain information that is capable of providing sufficient appropriate audit evidence, and the evaluation of whether sufficient appropriate evidence has been obtained sufficient appropriate audit evidence to be able to draw reasonable conclusions on which to base the audit opinion. [Proposed] ISA 500 (Redrafted) provides guidance on the means available for the auditor for selecting items for testing, of which audit sampling is one means.

Effective Date

3. This ISA is effective for audits of financial statements for periods beginning on or after [date].

Objective

4. The objective of the auditor when using audit sampling is to design and select the audit sample, perform audit procedures on the sample items, and evaluate the results from the sample in a manner that will provide an appropriate basis for the auditor to draw conclusions about the population from which the sample is drawn.

Definitions

5. For purposes of the ISAs, the following terms have the meanings attributed below:

 (a) Audit sampling (sampling) – The application of audit procedures to less than 100% of items within a population of audit relevance such that all sampling units have a chance of selection in order to provide the auditor with a reasonable basis on which to draw conclusions about the entire population.

 (b) Population – The entire set of data from which a sample is selected and about which the auditor wishes to draw conclusions. For example, all of the items in a class of transactions or account balance constitute a population. A population may be divided into strata, or sub-populations, with each stratum being examined separately.

 (c) Sampling risk – The risk that the auditor’s conclusion based on a sample may be different from the conclusion if the entire population were subjected to the same audit procedure. Sampling risk can lead to two types of erroneous conclusions:

1 ISA 500 (Redrafted), “Audit Evidence.”
2 This date will not be earlier than December 15, 2008.
(i) In the case of a test of controls, that controls are more effective than they actually are, or in the case of a test of details, that a material misstatement does not exist when in fact it does. Because the auditor is primarily concerned with this type of erroneous conclusion because it affects audit effectiveness and is more likely to lead to an inappropriate audit opinion, the auditor is primarily concerned with this type of erroneous conclusion.

(ii) In the case of a test of controls, that controls are less effective than they actually are, or in the case of a test of details, that a material misstatement exists when in fact it does not. This type of erroneous conclusion affects audit efficiency as it would usually lead to additional work to establish that initial conclusions were incorrect.

(d) Non-sampling risk – The risk that the auditor does not recognize reaches an erroneous conclusion for any reason not related to sampling risk. (Ref: Para A1)

(e) Anomaly – A misstatement or deviation that is demonstrably not representative of misstatements or deviations included in the sample for what they are in a population. [note: moved from 5(k)]

(ef) Sampling unit – The individual items constituting a population. (Ref: Para A2)

(fg) Statistical sampling – An approach to sampling that has the following characteristics:

(i) Random selection of the sample items units; and

(ii) The use of probability theory to evaluate sample results, including measurement of sampling risk.

A sampling approach that does not have characteristics (i) and (ii) is considered non-statistical sampling.

(gh) Stratification – The process of dividing a population into sub-populations, each of which is a group of sampling units which have similar characteristics (often monetary value).

(hi) Tolerable misstatement – A monetary amount set by the auditor in respect of which the auditor seeks to obtain an appropriate level of assurance that the monetary amount set by the auditor is not exceeded by the actual misstatement in the population. (Ref: Para A4.2)

(ij) Tolerable rate of deviation – A rate of deviation from prescribed internal control procedures set by the auditor in respect of which the auditor seeks to obtain an appropriate level of assurance that the rate of deviation set by the auditor is not exceeded by the actual rate of deviation in the population.

(j) Estimated maximum misstatement – The upper limit of the range of possible misstatement consistent with the auditor’s risk assessment and results of other audit procedures.

(k) Estimated maximum rate of deviation – The upper limit of the range of possible rates of deviation consistent with the auditor’s planned reliance on internal controls.
(l) Projected misstatements — The auditor’s best estimate of misstatements in populations involving the projection of misstatements identified in audit samples to the entire populations from which the samples were drawn.

(m) Anomaly — A misstatement or deviation that is demonstrably not representative of misstatements or deviations in a population.

Requirements

Sample Design, Size and Selection of Items for Testing

6. When designing an audit sample, the auditor shall consider the objectives of the audit procedure and the characteristics of the population from which the sample will be drawn. (Ref: Para. A2-A8)

7. The auditor shall determine a sample size sufficient to allow the auditor to conclude with an appropriate level of sampling risk that:

(i) In the case of tests of details, the total misstatement does not exceed tolerable misstatement; or
(ii) In the case of tests of controls, the total rate of deviation does not exceed the tolerable rate of deviation reduce sampling risk to an acceptably low level. (Ref: Para. A9-A10-A11)

8. The auditor shall select items for the sample in such a way that each sampling unit in the population has a chance of selection. (Ref: Para. A11-A12-A13)

Performing Audit Procedures

9. The auditor shall perform audit procedures on each item selected appropriate to the particular purpose of the audit objective on each item selected procedure.

10. If the audit procedure is not applicable to the selected item, the auditor shall perform the procedure on a replacement item. (Ref: Para. A13-A14)

11. If the auditor is unable to apply the designed audit procedures, or suitable alternative procedures, to a selected item, the auditor shall treat that item as a deviation from the prescribed control, in the case of tests of controls, or a misstatement, in the case of tests of details. The auditor shall also consider whether the reasons for the inability to apply the designed audit procedures or suitable alternative procedures have implications for the assessed risk of material misstatement due to fraud, for the assessed level of control risk that the auditor expects to be supported, or for the degree of reliance on management representations. (Ref: Para. A14-A15-A16)

Nature and Cause of Deviations and Misstatements

12. The auditor shall investigate the nature and cause of any deviations or misstatements identified, and determine their possible effect on the objectives of the particular audit procedure and on other areas of the audit. (Ref: Para. A15-17)

The term projected misstatements can be used when referring to a particular sample or when referring to a combination of samples.
13. In the extremely rare circumstances when the auditor considers a misstatement or deviation discovered in a sample to be an anomaly, the auditor shall obtain a high degree of certainty that such misstatement or deviation is not representative of the population. The auditor shall obtain this degree of certainty by performing additional audit procedures to obtain sufficient appropriate audit evidence that the misstatement or deviation does not affect the remainder of the population. (Ref: Para. A16-18)

Projecting Misstatements

14. For tests of details, the auditor shall project misstatements found in the sample to the population. (Ref: Para. A19-A21)

Projecting and Evaluating Sample Results

15. The auditor shall evaluate the sample results to determine whether, in the case of tests of controls, the rate of deviation is less than tolerable rate of deviation, and in the case of tests of details, the projected misstatement is less than tolerable misstatement. (Ref: Para. A22-A23)

16. The auditor shall conclude whether, in light of the risk assessment and other procedures performed, the use of audit sampling has provided an appropriate basis for conclusions about the population that has been tested. In making these conclusions:

(a) For tests of controls, the auditor shall determine, for the population, the projected rate of deviation and shall evaluate its effect on the objective of the particular audit procedure and on other areas of the audit.

(b) For tests of details, the auditor shall determine, for the population, projected misstatement and shall evaluate its effect on the objective of the particular audit procedure and on other areas of the audit. (Ref: Para. A17-A20) If the auditor determines that the use of audit sampling has not provided an appropriate basis for conclusions about the population, the auditor shall obtain additional audit evidence. (Ref: Para. A21-24)

Application and Other Explanatory Material

Definitions

Non-sampling Risk (Ref: Para. 5(d))

A1. Examples of non-sampling risk include reliance on audit evidence that is persuasive rather than conclusive, use inappropriate audit procedures, or misinterpretation of audit evidence and failure to recognize an error.
Sampling Unit (Ref: Para. 5(f))

A2. The sampling units might be physical items (for example, checks listed on deposit slips, credit entries on bank statements, sales invoices or debtors’ balances) or monetary units.

Tolerable Misstatement (Ref: Para. 5(h))

A1-3. When designing a sample, the auditor determines tolerable misstatement in order to address the risk that the aggregate of individually immaterial misstatements may cause the financial statements to be materially misstated and provide a margin for possible undetected misstatements as described. Tolerable misstatement is the application of performance materiality, as defined in [proposed] ISA 320 (Revised and Redrafted), “Materiality in Planning and Performing an Audit,” to a particular sampling procedure. Tolerable misstatement may be the same amount, or an amount lower than performance materiality.

Sample Design, Size and Selection of Items for Testing

Sample Design (Ref: Para. 6)

A2-4. Audit sampling enables the auditor to obtain and evaluate audit evidence about some characteristic of the items selected in order to form or assist in forming a conclusion concerning the population from which the sample is drawn. Audit sampling can be applied using either non-statistical or statistical sampling approaches.

A3-5. When designing an audit sample, the auditor’s consideration includes the specific objectives to be achieved and the combination of audit procedures which is likely to best achieve those objectives. Consideration of the nature of the audit evidence sought and possible deviation or misstatement conditions or other characteristics relating to that audit evidence will assist the auditor in defining what constitutes a deviation or misstatement and what population to use for sampling. In fulfilling the requirement of paragraph 8 of ISA 500 (Redrafted), when performing audit sampling, the auditor performs audit procedures to obtain evidence that in information upon which the audit sampling is performed is sufficiently complete and accurate.

A4-6. The auditor’s consideration of the objectives of the audit procedure, as required by paragraph 9, includes a clear understanding of what constitutes a deviation or misstatement so that all, and only, those conditions that are relevant to the objective of the audit procedure are included in the projection of deviations or misstatements. For example, in a test of details relating to the existence of accounts receivable, such as confirmation, payments made by the customer before the confirmation date but received shortly after that date by the client, are not considered a misstatement. Also, a misposting between customer accounts does not affect the total accounts receivable balance. Therefore, it is not appropriate to consider this a misstatement in evaluating the sample results of this particular audit procedure, even though it may have an important effect on other areas of the audit, such as the assessment of the risk of fraud or the adequacy of the allowance for doubtful accounts.

4 ISA 320 (Revised and Redrafted), “Materiality in Planning and Performing an Audit.”
A5. When designing the sample, for tests of controls, the auditor makes an assessment of the expected rate of deviation based on the auditor’s understanding of the design of the relevant controls and whether they have been implemented, or on the examination of a small number of items from the population. Similarly, for tests of details, the auditor makes an assessment of the expected misstatement in the population. This assessment is useful for designing and determining sample size. For example, if the expected rate of deviation is unacceptably high, tests of controls will normally not be performed and the auditor will normally decide not to perform tests of controls. Similarly, when designing the sample, for tests of details, the auditor makes an assessment of the expected misstatement in the population. If the expected misstatement is high, 100% examination or use of a large sample size may be appropriate, when performing tests of details.

Statistical Versus Non-Statistical Sampling Approaches

A6. The decision whether to use a statistical or non-statistical sampling approach is a matter for the auditor’s judgment; however, sample size is not a valid criterion to distinguish between statistical and non-statistical approaches.

A7. While the approach adopted may not meet the definition of statistical sampling, elements of a statistical approach may be used, for example the use of random selection using computer generated random numbers. However, statistical measurements of sampling risk are valid only when the approach adopted has the characteristics of statistical sampling.

Information on Which Audit Procedures are Based

A8. In considering the characteristics of the population from which the sample will be drawn, the auditor may determine that stratification or value-weighted selection is appropriate. Appendix 1 provides further discussion on stratification and value-weighted selection.

A9. The decision whether to use a statistical or non-statistical sampling approach is a matter for the auditor’s judgment; however, sample size is not a valid criterion to distinguish between statistical and non-statistical approaches.

Sample Size (Ref: Para. 7)

A9.10. The level of sampling risk that the auditor is willing to accept affects the sample size required. The lower the risk the auditor is willing to accept, the greater the sample size will need to be.

A9.11. The sample size can be determined by the application of a statistically-based formula or through the exercise of professional judgment. Appendices 2 and 3 indicate the influences that various factors typically have on the determination of sample size, and hence the level of sampling risk. When circumstances are similar, the effect on sample size of factors such as those identified in Appendices 2 and 3 will be similar regardless of whether a statistical or non-statistical approach is chosen.
Selection of Items for Testing (Ref: Para. 8)

A11. Statistical sampling requires that sample items are selected at random so that each sampling unit has a known probability of being selected. The sampling units might be physical items (for example, checks listed on deposit slips, credit entries on bank statements, sales invoices or debtors’ balances) or monetary units. With non-statistical sampling, an auditor uses professional judgment to select the items for sample items. Because the purpose of sampling is to draw conclusions about the entire population, it is important that the auditor selects a representative sample so that bias is avoided by choosing sample items, which have characteristics typical of the population, and so that bias is avoided.

A12. A13. The principal methods of selecting samples are the use of random selection, systematic selection and haphazard selection. Each of these methods is discussed in Appendix 4.

Performing Audit Procedures (Ref: Para. 9-11)

A13. An example of when it may be necessary to perform the procedure on a replacement item is when a voided check is selected while testing for evidence of payment authorization. If the auditor is satisfied that the check has been properly voided such that it does not constitute a deviation, an appropriately chosen replacement is examined.

A14. An example of when the auditor is unable to apply the designed audit procedures to a selected item is when documentation relating to that item has been lost.

A16. An example of a suitable alternative procedure might be the examination of subsequent receipts when no reply has been received in response to a positive confirmation request.

Nature and Cause of Deviations and Misstatements (Ref: Para. 12-13)

A15. In analyzing the deviations and misstatements identified, the auditor may observe that many have a common feature, for example, type of transaction, location, product line or period of time. In such circumstances, the auditor may decide to identify all items in the population that possess the common feature, and extend audit procedures in that stratum to those items. In addition, such deviations or misstatements may be intentional, and may indicate the possibility of fraud.

A16. The smaller the size of the sample size in which the misstatement or deviation occurs, the more difficult it will be for the auditor to obtain the level of certainty necessary to determine persuasive the evidence the auditor will need to support the conclusion that the misstatement or deviation identified is an anomaly.

Projecting and Misstatements (Ref: Para. 14)

A19. The auditor is required to project misstatements for the population to obtain a broad view of the scale of misstatement but this projection may not be sufficient to determine an amount to be recorded.

A20. When a misstatement has been established as an anomaly, it may be excluded when projecting misstatements in samples to the population. However, the effect of any such
misstatement, if uncorrected, still needs to be considered in addition to the projection of the non-anomalous misstatements.

A21. For tests of controls, no explicit projection of deviations is necessary since the sample deviation rate is also the projected deviation rate for the population as a whole. ISA 330, “The Auditor’s Responses to Assessed Risks”: provides guidance when deviations from controls upon which the auditor intends to rely are detected.

Evaluating Sample Results (Ref: Para. 14-15-16)

A17. In the case of A22. For tests of controls, an unexpectedly high sample deviation rate may lead to an increase in the assessed risk of material misstatement, unless further audit evidence substantiating the initial assessment is obtained. In the case of For tests of details, an unexpectedly high misstatement amount in a sample may cause the auditor to believe that a class of transactions or account balance is materially misstated, in the absence of further audit evidence that no material misstatement exists.

A18. When a misstatement has been established as an anomaly, it may be excluded when projecting misstatements in samples to the population. However, the effect of any such misstatement, if uncorrected, still needs to be considered in addition to the projection of the non-anomalous misstatements.

A19. When the projected rate of deviation exceeds the tolerable rate of deviation or the projected misstatement plus anomalous misstatement exceeds that which the auditor deems tolerable. In the case of tests of details, the projected misstatement plus anomalous misstatement, if any, is the auditor’s best estimate of misstatement in the population. When the projected misstatement plus anomalous misstatement, if any, exceeds tolerable misstatement, the sample does not provide an appropriate basis for conclusions about the population that has been tested. If the total amount of projected misstatement plus anomalous misstatement is less than but close to that which the auditor deems tolerable, the auditor may consider the persuasiveness of the sample results in the light of other audit procedures, and may consider it appropriate to obtain additional audit evidence. The total of projected misstatement plus anomalous misstatement is the auditor’s best estimate of the closer the projected misstatement plus anomalous misstatement is to tolerable misstatement, the more likely that actual misstatement in the population. However, sampling results are affected by sampling risk. Thus when the best estimate of misstatement is close to the tolerable misstatement, the auditor recognizes the risk that a different sample would result in a different best estimate that could exceed may exceed tolerable misstatement. Also if the projected misstatement is greater than the auditor’s expectations of misstatement used to determine the sample size, the auditor may conclude that there is an unacceptable sampling risk that the actual misstatement in the population exceeds the tolerable misstatement. Considering the results of other audit procedures helps the auditor to assess this risk, while the risk is the risk that actual misstatement in the population exceeds tolerable misstatement, and the risk may be reduced if additional audit evidence is obtained.

\[\text{2 ISA 330 (Redrafted), paragraphs 17 and A41.}\]
A20. When using statistical sampling the auditor may use estimated maximum misstatement for purposes of concluding whether the audit sample has provided an appropriate basis for conclusions. See Appendix 5. A21.24. If the auditor concludes that audit sampling has not provided an appropriate basis for conclusions about the population that has been tested, the auditor may:

- Request management to first investigate misstatements or deviations that have been identified and the potential for further misstatements or deviations and to make any necessary adjustments; and/or
- Tailor the nature, timing and extent of those further audit procedures to best achieve the required assurance. For example, in the case of tests of controls, the auditor might extend the sample size, test an alternative control or modify related substantive procedures.
Stratification and Value-Weighted Selection

In determining the attributes of the population from which the sample will be drawn, the auditor may determine that stratification or value-weighted selection is appropriate. This Appendix provides guidance to the auditor on the use of stratification and value-weighted sampling techniques.

Stratification

1. Audit efficiency may be improved if the auditor stratifies a population by dividing it into discrete sub-populations which have an identifying characteristic. The objective of stratification is to reduce the variability of items within each stratum and therefore allow sample size to be reduced without increasing sampling risk.

2. When performing tests of details, the population is often stratified by monetary value. This allows greater audit effort to be directed to the larger value items, as these items may contain the greatest potential misstatement in terms of overstatement. Similarly, a population may be stratified according to a particular characteristic that indicates a higher risk of misstatement, for example, when testing the allowance for doubtful accounts in the valuation of accounts receivable, balances may be stratified by age.

3. The results of audit procedures applied to a sample of items within a stratum can only be projected to the items that make up that stratum. To draw a conclusion on the entire population, the auditor will need to consider the risk of material misstatement in relation to whatever other strata make up the entire population. For example, 20% of the items in a population may make up 90% of the value of an account balance. The auditor may decide to examine a sample of these items. The auditor evaluates the results of this sample and reaches a conclusion on the 90% of value separately from the remaining 10% (on which a further sample or other means of gathering audit evidence will be used, or which may be considered immaterial).

4. If a class of transactions or account balance has been divided into strata, the misstatement is projected for each stratum separately. Projected misstatements for each stratum are then combined when considering the possible effect of misstatements on the total class of transactions or account balance.

Value-Weighted Selection

3-5. When performing tests of details it may be efficient, particularly when testing for overstatements, to identify the sampling unit as the individual monetary units (for example, dollars) that make up the population. Having selected specific monetary units from within the population, for example, the accounts receivable balance, the auditor may then examine the particular items, for example, individual balances, that contain those monetary units. One benefit of this approach to defining the sampling unit is that audit effort is directed to the larger value items because they have a greater chance of selection, and can result in smaller sample
sizes. This approach is ordinary may be used in conjunction with the systematic method of sample selection (described in Appendix 4) and is most efficient when selecting items using random selection.
Examples of Factors Influencing Sample Size for Tests of Controls

The following are factors that the auditor may consider when determining the sample size for tests of controls. These factors, which need to be considered together, assume the auditor does not modify the nature or timing of tests of controls or otherwise modify the approach to substantive procedures in response to assessed risks.

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>EFFECT ON SAMPLE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An increase in the extent to which the risk of material misstatement is reduced by the operating effectiveness of auditor’s risk assessment takes into account relevant controls.</td>
<td>Increase</td>
</tr>
<tr>
<td>2. An increase in the tolerable rate of deviation from the prescribed control activity that the auditor is willing to accept.</td>
<td>Decrease</td>
</tr>
<tr>
<td>3. An increase in the expected rate of deviation from the prescribed control activity that the auditor expects to find in the population to be tested.</td>
<td>Increase</td>
</tr>
</tbody>
</table>

The extent to which the risk of material misstatement is reduced by the operating effectiveness of controls. The more assurance the auditor intends to obtain from the operating effectiveness of controls, the lower the auditor’s assessment of the risk of material misstatement will be, and the larger the sample size will need to be. When the auditor’s assessment of the risk of material misstatement at the assertion level includes an expectation of the operating effectiveness of controls, the auditor is required to perform tests of controls. Other things being equal, the greater the reliance the auditor places on the operating effectiveness of controls in the risk assessment, the greater is the extent of the auditor’s tests of controls (and therefore, the sample size is increased).

The rate of deviation from the prescribed control activity the auditor is willing to accept (tolerable rate of deviation). The lower the tolerable rate of deviation that the auditor is willing to accept, the larger the sample size needs to be.

The rate of deviation from the prescribed control activity the auditor expects to find in the population (expected control deviation). The higher the expected rate of deviation that the auditor expects, the larger the sample size needs to be so that the auditor is in a position to make a reasonable estimate of the actual rate of deviation. Factors relevant to the auditor’s consideration of the expected rate of deviation...
include the auditor’s understanding of the business (in particular, risk assessment procedures undertaken to obtain an understanding of internal control), changes in personnel or in internal control, the results of audit procedures applied in prior periods and the results of other audit procedures. High expected control deviation rates ordinarily warrant little, if any, reduction of the assessed risk of material misstatement and therefore in such circumstances tests of controls would ordinarily be omitted.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 4. A decrease in the risk that the auditor will conclude that the risk of material misstatement is lower than the actual risk | Increase | The auditor’s required level of assurance.

An increase in the auditor’s desired level of assurance that the tolerable rate of deviation is not exceeded by the actual rate of material misstatement in the population.

5. An increase in the number of sampling units in the population | Depends on the type of sample | The number of sampling units in the population.

For large populations, the actual size of the population has little, if any, effect on sample size. For small populations however, audit sampling may not be as efficient as alternative means of obtaining sufficient appropriate audit evidence.
Appendix 3
(Ref: Para. A4011)

Examples of Factors Influencing Sample Size for Tests of Details

The following are factors that the auditor may consider when determining the sample size for tests of
details. These factors, which need to be considered together, assume the auditor does not modify the
approach to tests of controls or otherwise modify the nature or timing of substantive procedures in
response to the assessed risks.

<table>
<thead>
<tr>
<th>FACTOR</th>
<th>EFFECT ON SAMPLE SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. An increase in the auditor’s assessment of the risk of material misstatement</td>
<td>Increase</td>
</tr>
<tr>
<td>2. An increase in the use of other substantive procedures directed at the same assertion</td>
<td>Decrease</td>
</tr>
<tr>
<td>3. An increase in the total misstatement that the auditor is willing to accept (auditor’s desired level of assurance that tolerable misstatement is not exceeded by actual misstatement)</td>
<td>Increase</td>
</tr>
</tbody>
</table>

The auditor’s assessment of the risk of material misstatement. The higher the auditor’s assessment of the risk of material misstatement, the larger the sample size needs to be. The auditor’s assessment of the risk of material misstatement is affected by inherent risk and control risk. For example, if the auditor does not perform tests of controls, the auditor’s risk assessment cannot be reduced for the effective operation of internal controls with respect to the particular assertion. Therefore, in order to reduce audit risk to an acceptably low level, the auditor needs a low detection risk and will rely more on substantive procedures. The more audit evidence that is obtained from tests of details (that is, the lower the detection risk), the larger the sample size will need to be.

The use of other substantive procedures directed at the same assertion. The more the auditor is relying on other substantive procedures (tests of details or substantive analytical procedures) to reduce to an acceptable level the detection risk regarding a particular population, the less assurance the auditor will require from sampling and, therefore, the smaller the sample size can be.

The auditor’s required level of assurance. The greater the level of assurance that the auditor requires that the results of the sample are in fact indicative of the actual amount of misstatement in the population, the larger the sample size needs to be.
4. An increase in the total misstatement that the auditor is willing to accept (tolerable misstatement)	Decrease	The total misstatement the auditor is willing to accept (tolerable misstatement). The lower the tolerable total misstatement, that the auditor is willing to accept, the larger the sample size needs to be.
5. An increase in the amount of misstatement the auditor expects to find in the population	Increase	The amount of misstatement the auditor expects to find in the population (expected misstatement). The greater the amount of misstatement the auditor expects to find in the population, the larger the sample size needs to be in order to make a reasonable estimate of the actual amount of misstatement in the population. Factors relevant to the auditor’s consideration of the expected misstatement amount include the extent to which item values are determined subjectively, the results of risk assessment procedures, the results of tests of control, the results of audit procedures applied in prior periods, and the results of other substantive procedures.
6. Stratification of the population when appropriate	Decrease	Stratification. When there is a wide range (variability) in the monetary size of items in the population, it may be useful to group items of similar size into separate sub-populations or strata. This is referred to as stratification. When a population can be appropriately stratified, the aggregate of the sample sizes from the strata generally will be less than the sample size that would have been required to attain a given level of sampling risk, had one sample been drawn from the whole population.
7. The number of sampling units in the population	Negligible Effect	The number of sampling units in the population. For large populations, the actual size of the population has little, if any, effect on sample size. Thus, for small populations, audit sampling is often not as efficient as alternative means of obtaining sufficient appropriate audit evidence. (However, when using monetary unit sampling, an increase in the monetary value of the population increases sample size, unless this is offset by a proportional increase in materiality for the population.
financial statements as a whole (and, if applicable, materiality level or levels for particular classes of transactions, account balances or disclosures.)
Sample Selection Methods

There are many methods of selecting samples. The principal methods are as follows:

(a) Random selection, (such as may be applied through random number generators, for example, random number tables).

(b) Systematic selection, in which the number of sampling units in the population is divided by the sample size to give a sampling interval, for example 50, and having determined a starting point within the first 50, each 50th sampling unit thereafter is selected. Although the starting point may be determined haphazardly, the sample is more likely to be truly random if it is determined by use of a computerized random number generator or random number tables. When using systematic selection, the auditor would need to determine that sampling units within the population are not structured in such a way that the sampling interval corresponds with a particular pattern in the population. Monetary unit sampling is a form of systematic selection using the monetary unit as the base.

(c) Monetary Unit Sampling, is a sample size, selection and evaluation method that uses attributes theory to express a conclusion in dollar amounts. This technique is efficient in low misstatement populations where the primary objective is to test for overstatement.

(d) Haphazard selection, in which the auditor selects the sample without following a structured technique. Although no structured technique is used, the auditor would nonetheless avoid any conscious bias or predictability (for example, avoiding difficult to locate items, or always choosing or avoiding the first or last entries on a page) and thus attempt to ensure that all items in the population have a chance of selection. Haphazard selection is not appropriate when using statistical sampling.

(e) Block selection involves selection a block(s) of contiguous items from within the population. Block selection cannot ordinarily be used in audit sampling because most populations are structured such that items in a sequence can be expected to have similar characteristics to each other, but different characteristics from items elsewhere in the population. Although in some circumstances it may be an appropriate audit procedure to examine a block of items, it would rarely be an appropriate sample selection technique when the auditor intends to draw valid inferences about the entire population based on the sample.
Appendix 5

(Ref: Para. A20)

Using Estimated Maximum Misstatement to Evaluate Sample Results

1. Statistical sampling enables the auditor to determine estimated maximum misstatement. When using statistical sampling the auditor may use estimated maximum misstatement for purposes of concluding whether the audit sample has provided an appropriate basis for conclusions.

2. Projected misstatement is the auditor's best estimate of the amount of misstatement in the population. Estimated maximum misstatement, on the other hand, is the upper limit of the range of reasonably possible misstatement; and is always larger than projected misstatement. Even if no misstatements are detected in a sample, so that projected misstatement is zero, there is a probability that at least some misstatement exists despite the lack of sampling evidence. The risk ordinarily declines for increasingly large amounts of potential misstatement, and at some point on the continuum of potential misstatement reaches an acceptably low level. That point is the estimated maximum misstatement. If misstatements are detected in the sample, the projected misstatement is greater than zero and the estimated maximum misstatement is greater than it would have been had no misstatements been detected.

3. When the sample is evaluated, estimated maximum misstatement may be compared with tolerable misstatement to determine whether the auditor has achieved reasonable assurance that actual misstatement is tolerable. If estimated maximum misstatement exceeds tolerable misstatement the auditor cannot conclude with an appropriate level of assurance that actual misstatement does not exceed tolerable misstatement. If this is the case, in order to make the appropriate conclusions required by paragraph 14 of this ISA, it is necessary to obtain additional audit evidence.

4. Considerations analogous to those discussed in paragraphs 2 and 3 in relation to estimated maximum misstatement also apply to the estimated maximum rate of deviation in the context of tests of controls.